The independent platform for news, articles and advice for professionals in laboratory medicine

Distorted DNA may increase risk of changes with CRISPR-Cas9

Distortions to DNA, which occur routinely during gene expression and other cellular processes, could lead to off-target changes to the genome when using CRISPR-Cas9, a new study suggests. The Medical Research Council scientists behind the research say that their findings may help to pave the way to improve the accuracy of gene editing for clinical applications.

During the expression of genes, DNA is stretched and distorted out of its usual shape. While this is needed for proper function of the cell’s own machinery, it may pose a challenge for CRISPR-Cas9 gene editing by increasing the risk of off-target edits, potentially introducing harmful changes. The findings, from scientists at the MRC London Institute of Medical Sciences and AstraZeneca, are published today in the journal Nature Structural and Molecular Biology.

CRISPR-Cas9, a gene editing tool that allows researchers to find and edit strands of DNA, has gained worldwide recognition for its multitude of purposes as scientists use the technology across a range of sectors, including medicine, drug discovery and agriculture.

In the study, the accuracy and precision of CRISPR-Cas9 was investigated using a novel approach: scientists used optical tweezers – a tool that uses laser beams to manipulate DNA – to mimic the contortions that DNA naturally goes through as it is read by the cell’s machinery. They then used CRISPR-Cas9 to edit the gene and monitored its accuracy using fluorescence microscopy.

Results showed that CRISPR is accurate when DNA is loose and relaxed. But when distortions occurred – in this case from being highly stretched – accuracy decreased, and off-target edits were observed. Understanding this effect will aid the design of CRISPR systems with increased accuracy, alongside methods to assess this risk.

Upcoming Events

ECCMID 2024 - European Congress of Clinical Microbiology and Infectious Diseases

Fira Gran Via, 08038 Barcelona, Spain
27-30 April 2024

British Society for Microbial Technology Annual Microbiology Conference

UK Health Security Agency, Colindale, London
2 May 2024

EQA Reports: Interpreting Key Information & Troubleshooting Tips

ONLINE - Zoom
Thursday 16th May 2024

Participants’ Meeting: UK NEQAS Immunology, Immunochemistry & Allergy

Sheffield Hallam University, City Campus, Howard Street, Sheffield
24th May 2024

Med-Tech Innovation Expo

NEC, Birmingham
5-6 June, 2024

UK NEQAS Blood Coagulation: Clinical and Laboratory Haemostasis 2024

Sheffield Hallam University
5th - 6th June 2024

Access the latest issue of Pathology In Practice on your mobile device together with an archive of back issues.

Download the FREE Pathology In Practice app from your device's App store

Upcoming Events

ECCMID 2024 - European Congress of Clinical Microbiology and Infectious Diseases

Fira Gran Via, 08038 Barcelona, Spain
27-30 April 2024

British Society for Microbial Technology Annual Microbiology Conference

UK Health Security Agency, Colindale, London
2 May 2024

EQA Reports: Interpreting Key Information & Troubleshooting Tips

ONLINE - Zoom
Thursday 16th May 2024

Participants’ Meeting: UK NEQAS Immunology, Immunochemistry & Allergy

Sheffield Hallam University, City Campus, Howard Street, Sheffield
24th May 2024

Med-Tech Innovation Expo

NEC, Birmingham
5-6 June, 2024

UK NEQAS Blood Coagulation: Clinical and Laboratory Haemostasis 2024

Sheffield Hallam University
5th - 6th June 2024

Access the latest issue of Pathology In Practice on your mobile device together with an archive of back issues.

Download the FREE Pathology In Practice app from your device's App store

Step Communications Ltd, Step House, North Farm Road, Tunbridge Wells, Kent TN2 3DR
Tel: 01892 779999
www.step-communications.com
© 2024 Step Communications Ltd. Registered in England. Registration Number 3893025